Causality analysis for root cause diagnosis in Fluid Catalytic Cracking unit
نویسندگان
چکیده
منابع مشابه
Environmental study of waste energy recovery by using exergy and economic analysis in a fluid catalytic cracking unit
An increase in fossil fuel consumption has significantly increased the concentration of greenhouse gases (GHGs). Waste energy recovery can reduce GHGs by reducing fossil fuel consumption. In the FCC unit in refineries, the catalyst is continuously regenerated by burning off the deposited coke with air and a large flux of waste gas with high temperature is generated which is vented into the atmo...
متن کاملApplication of Zeolitic Additives in the Fluid Catalytic Cracking (FCC)
Current article describes application of zeolites in fluid catalytic cracking (FCC). The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC) catalysts and additives due to the presence of active acid sites in the zeolite framework increase the formation of desired cracking product...
متن کاملRoot Cause and Error Analysis
Error is an inevitable part of life and cannot be completely eliminated, but it can be minimized. A root cause analysis is a technique for understanding the systematic error causes that is involved beyond a person or people to implement an errors and including field and environmental causes of errors when occur in this situation too. An important factor of an error occurrence is a root cause (c...
متن کاملapplication of zeolitic additives in the fluid catalytic cracking (fcc)
current article describes application of zeolites in fluid catalytic cracking (fcc). the use of several zeolitic additives for the production light olefins and reduction of pollutants is described. application of zeolites as fluid catalytic cracking (fcc) catalysts and additives due to the presence of active acid sites in the zeolite framework increase the formation of desired cracking product...
متن کاملApplication of Modified Multi Model Predictive Control Algorithm to Fluid Catalytic Cracking Unit
This paper presents a modified multi model predictive control algorithm for the control of riser outlet temperature and regenerator temperature for the fluid catalytic cracking unit (FCCU). The models of the fluid catalytic cracking unit are estimated using subspace identification (N4SID) algorithm. The PRBS signal is applied as an input signal to estimate the FCCU models. Since the estimated m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2015
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2015.09.631